# 地域の大学等研究機関での 研究設備・機器等の共用化





次世代自動車宮城県エリア 研究推進委員長 宮本 明

2017年2月9日 宮城県産業技術総合センター 自動車産業支援部長 岩間力

## 発表の流れ





Part 1.

東北大学における研究設備・機器等の共用化

Part 2.

宮城県産業技術総合センターにおける研究設備・ 機器等の共用化

- 1.活動概要
- 2. 研究設備・機器等の共用化実施状況
- 3. 共用可能設備
- 4. 目標達成
- 5. 今後の取組で目指すもの

## 活動概要(東北大学)

# 東北大学



#### (設備・機器共用化)

- 人材育成プログラムに共用機器を利活用する、実習コース、 応用・実践コースを設け施設・機器利用を促進。
- ▶ 66機器の実施体制を整備し、効果的な利用を推進。







写真1(透過型電子顕微鏡/村松研)

写真2(左:水素定量分析装置/右:水素分析·熱分析装置/折茂研) 写真3(紫外可視分光光度計/殷研究室)



写真・イエーションキャプチャ/次世代移動体研究プロジェクト)



写真5(弗化物単結晶育成マイクロ引き下げ装置/吉川研)

## 研究設備・機器等の共用化実施状況

- ▶ 頻度の高いもので月に数回、少ないもので年に数回の使用 頻度でも効果的な利用が進められている。
- ▶ 多くの研究設備・機器が利用されており、平成27年度は全体での延べ時間数は20,000時間強となっている。

#### 代表的な共用機器

写真1:ラピッドプロトタイピン グ(3Dプリンタ)(次世代移動 体研究プロジェクト) 企業7社、学内利用600h/年 (H27年度実績)





写真2:ドライビングシミュレータ(次世 代移動体研究プロジェクト) 企業1社、448h/年(H27年度実績)

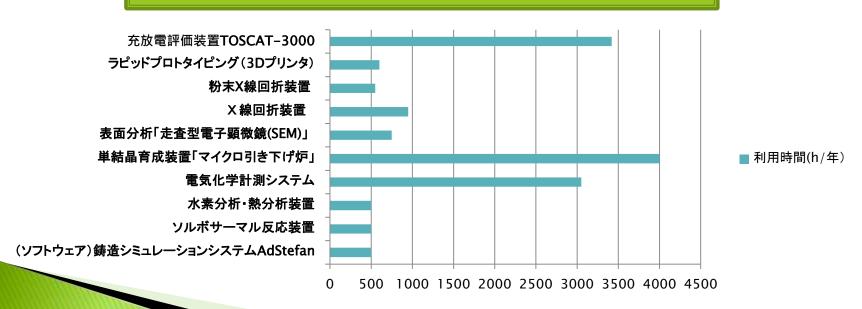
## 東北大学共用可能設備

| 1  | バッチ式超臨界反応装置                    | 23 | 組織観察用研磨装置一式                      | 45 | 粉末X線回折装置                             |
|----|--------------------------------|----|----------------------------------|----|--------------------------------------|
| 2  | 連続式超臨界反応装置および付属装置              | 24 | 透過型電子顕微鏡(TEM)                    | 46 | 結晶性評価·薄膜構造解析「薄膜構造評価用X線回折装置」          |
| 3  | 光学顕微鏡                          | 25 | 硬さ計                              | 47 | 反射Laue装置                             |
| 4  | 垂直吸引型流動性試験装置                   | 26 | 画像解析ソフトウェア                       | 48 | 圧延機                                  |
| 5  | 電気炉                            | 27 | 水素分析·熱分析装置                       | 49 | DEFORM-3D                            |
| 6  | 万能試験機                          | 28 | ドライビングシミュレータ                     | 50 | ナノ粒子合成装置                             |
| 7  | 一方向凝固炉                         | 29 | クラウドサーバ                          | 51 | セラミックス合成装置                           |
| 8  | 濡れ角測定装置                        | 30 | 全方向イメージングユニット                    | 52 | フーリエ変換赤外分光光度計(FTIR)                  |
| g  | (ソフトウェア)鋳造シミュレーションシステムAdStefan | 31 | モーションキャプチャ                       | 53 | 紫外可視分光光度計                            |
| 10 | 磁石レスモータ                        | 32 | トルクメータ、パワーメータ、直流電源、インバータ         | 54 | サーモグラフィ                              |
| 11 | モータ制御                          | 33 | 汎用電磁界解析ソフト(JMAG)、MATLAB/Simulink | 55 | ラピッドプロトタイピング(3Dプリンタ)                 |
| 12 | インホイール電気自動車                    | 34 | 汎用最適化プログラム(modeFRONTIER)         | 56 | オートカーボンコータ                           |
| 13 | ナノ精度機械加工、機能性インターフェース創成         | 35 | 3次元CADプログラム(SolidWorks)          | 57 | 全方位パノラマカメラ(Ladybug5)                 |
| 14 | PJD                            | 36 | 電気化学計測システム                       | 58 | スタンドアロンプロトタイピングシステム(Microautobox II) |
| 15 | 摩擦攪拌(接合・改質)装置                  | 37 | 電池材料の局所領域解析装置                    | 59 | ラマン測定用ヒートチャンバー(IZU-HC600)            |
| 16 | ソルボサーマル反応装置                    | 38 | 単結晶育成装置「マイクロ引き下げ炉」               | 60 | 自動車用目線一致ディスプレイ                       |
| 17 | OSC評価装置                        | 39 | 表面分析「走査型電子顕微鏡(SEM)」              | 61 | 5V/3A/10CH 充放電試験システム                 |
| 18 | XRD装置                          | 40 | 化学組成分析「エネルギー分散型X線分光法(EDS)」       | 62 | 車載型排気ガス分析計OBS-ONE                    |
| 19 | 表面粗さ計                          | 41 | 化学組成分析「電子線マイクロアナライザ(EPMA)」       | 63 | 充放電評価装置TOSCAT-3000                   |
| 20 | X線回折式応力測定装置                    | 42 | インピーダンスアナライザー                    | 64 | 超小型一軸スクリュー混練押出機                      |
| 21 | キャビテーションピーニング装置                | 43 | 高温示差熱分析(TG-DTA)装置                | 65 | 移動式フォースプレート                          |
| 22 | 非破壞評価装置                        | 44 | X線回折装置                           | 66 | 電子ビーム(EBM) 積層造形装置                    |
|    |                                |    |                                  |    |                                      |

多くの人材育成を支えながら展開

#### 目標達成(機器共用)

**平成27**年度実績


66機器の内

年間利用が300時間を超える機器は20台、そのうち

年間500時間以上利用されている機器は10台。

\*それぞれの機器については、1社から7社程度利用されている。

#### H27年度に特に多く利用された機器



## 今後の取組で目指すもの(機器共用)

- ・平成24年度から28年度にわたる5年間の次世代自動車 宮城県エリアでの研究設備・機器共用事業を通して、東北大学では、40余の研究室が連携し推進体制が構築されてきた。
- ・平成33年3月末までの期間に向けても、その体制を活用するとともに、新しいニーズに対応した学内外の新しいポテンシャルも活用しつつ研究設備・機器共用化事業を推進する。

#### 活動概要(宮城県産業技術総合センター)





http://www.mit.pref.miyagi.jp/

#### 設備•機器共用化

宮城県産業技術総合センターの設備・機器を地域企業へ開放

- 技術力向上
- 試作品の試験・評価

自動車関連産業への新規参入及び取引拡大を促進

## 設備・機器等の共用化実施状況

- ▶ 宮城県産業技術総合センターの「施設開放事業」を通じて、企業等にご利用いただいた。
- ▶ 施設開放事業対象200機器 11施設のうち,
  - ・自動車産業関連は、158機器 11施設
- ▶技術相談から,人材育成,開放利用などの技術支援 メニューを柔軟に適用し,効果の拡大化を図る体制を 構築している。
- ▶ WEBサイトで仕様などの機器情報を公表し,利用者の判断を助けるとともに,利用件数の拡大を促進している。

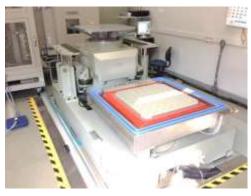
#### 宮城県産業技術総合センター共用可能設備

自動車産業関連の設備・機器

- 158機器
  - 精密測定関連機器
  - 材料加工関連機器
  - 電子•情報関連機器
  - 工業デザイン関連機器
  - 分析•測定関連機器

10機器

48機器


71機器

11機器

18機器

11施設

詳しくは, http://www.mit.pref.miyagi.jp/kiki/kaiho.html



複合振動試験装置



電波暗室

# この事業での主な導入設備

| 整備年度 | 機器名                | 主な利用内容            |  |  |
|------|--------------------|-------------------|--|--|
| 24   | 静電気試験器             | 車載機器の耐性評価         |  |  |
| 24   | 高品位3次元 CG設計ツール     | 自動車部品の3Dデータの作成    |  |  |
| 24   | カーナビテスト用スマートフォン・PC | 開発アプリの検証          |  |  |
| 25   | 高速温度・流量計測システム      | 鋳造溶湯温度,空気流量の計測    |  |  |
| 25   | 移動式流動性評価システム       | 鋳造溶湯の流動性評価        |  |  |
| 25   | 2次元色彩輝度計           | 車載表示パネル等の輝度ムラ等の計測 |  |  |
| 26   | CT画像解析システム         | 鋳物内部欠陥体積率評価,設計値比較 |  |  |
| 26   | ダイヤカットマシン          | 自動車部品の内部調査のための切断  |  |  |
| 26   | プリント基板加工機          | 車載情報機器用回路の試作      |  |  |
| 27   | ワンショット測定顕微鏡        | 材料, 部品の表面観察       |  |  |
| 28   | 油圧自動埋込機            | 試料の作製             |  |  |
| 28   | 倒立顕微鏡              | 材料, 部品の表面観察       |  |  |

# 機器共有例

#### 移動式流動性評価システム

平成25年度 本事業により導入

○自動車向けの鋳造製品の鋳造プロセスの評価

製品部品例:ケースカバー, ハウジングほか



移動式流動性評価システム





参考写真:市販車部品

# 機器共有例

# 静電気放電試験器 平成24年度 本事業により導入

○自動車向け製品, 部品の静電気試験

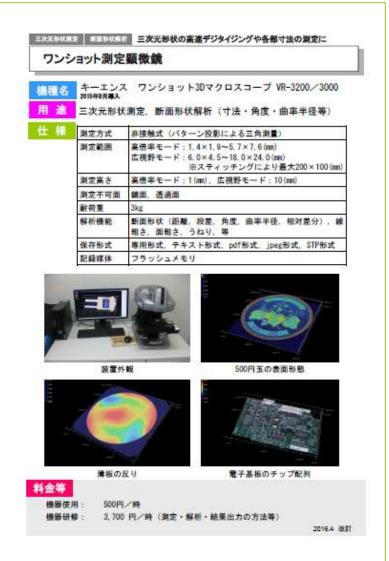
自動車向けの製品,部品は車メーカでの独自の試験規格のほかに,各規格があり,納入するためには必須の試験

製品部品例:センサー, 車載カメラ, オーディオ, スイッチほか



静電気放電試験器

国際規格ISO 10605 日本規格 JASO D010 米国規格SAE J 1113-13


### 機器の利用促進の例

#### 機器情報の発信

#### 「機器パンフレット」の公開

- 利用者が機器選択の参考にできる
- WEBサイトにおいてPDFファイルで公開

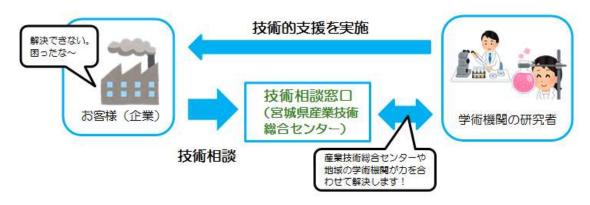
# ワンショット測定顕微鏡 平成27年度 本事業により導入



#### 目標達成(機器共用)

○産業技術総合センター機器開放実績 (自動車関連用途)

※目標:産技センター保有機器の年間稼働時間(約42,000 時間)の10%を自動車関連に活用⇒4,200時間


| 年度            | 件数     | 時間      |
|---------------|--------|---------|
| 平成24年度(7~3月)  | 488件   | 4,796時間 |
| 平成25年度(4~3月)  | 1,102件 | 6,142時間 |
| 平成26年度(4~3月)  | 953件   | 6,806時間 |
| 平成27年度(4~3月)  | 1,329件 | 8,916時間 |
| 平成28年度(4~12月) | 720件   | 6,535時間 |



目標の 機器共用数 達成

## 今後の取組で目指すもの(機器共用)

- ▶「施設開放事業」により<u>今後も継続</u>
- ▶「自動車関連産業への新規参入及び取引拡大」へ 宮城県自動車産業振興室、(公財)みやぎ産業振興機構と 連携協力しながら、技術開発から、知財、人材育成、商談ま で広範囲に自動車産業への支援を進めてまいります。
- ト KCみやぎ推進ネットワーク も活用いたします。 https://www.pref.miyagi.jp/soshiki/shinsan/kc-miyagi.html

